Showing posts with label 9CFR testing. Show all posts
Showing posts with label 9CFR testing. Show all posts

Friday, October 28, 2011

Porcine circoviruses, vaccines, and trypsin

It has now been more than a year since the announcements by GlaxoSmithKline (GSK) and Merck of the presence of porcine circovirus (PCV) genomic material in their rotavirus vaccines.
The presence of the PCV viral sequences was, in both cases, provisionally attributed to the use of porcine trypsin during the culture of the cell substrates used in the manufacture of the vaccines. It has been reported that the genomic sequences were associated with low levels of infectious PCV in the GSK vaccine.     
As mentioned in a previous posting, an expected outcome of these disclosures was heightened regulatory expectations, going forward, for PCV screening of porcine raw materials and of Master and Working cell banks which were exposed to porcine ingredients (e.g., trypsin) at some point in their development. In January of 2011, the European Pharmacopoeia (Ph. Eur.) chapter 5.2.3 Cell substrates for production of vaccines for human use was revised to include the following instruction: Trypsin used for the preparation of cell cultures is examined by suitable methods and shown to be sterile and free from mycoplasmas and viruses, notably pestiviruses, <circoviruses> and parvoviruses.” The addition of circoviruses to the list of viruses of concern (previously, mainly bovine viral diarrhea virus and porcine parvovirus) in Ph. Eur. 7.2 was not unexpected, based on the rotavirus vaccine experience.
A more broad expectation going forward may also be that vaccine and biologics production cell banks be proactively screened for unexpected, perhaps previously undetectable, viruses using detection techniques such as the deep sequencing used initially to detect the PCV in the GSK rotavirus vaccine. A related technique referred to as massively parallel sequencing (Massively Parallel Sequencing (MP-Seq), a New Tool For Adventitious Agent Detection and Virus Discovery) has been adopted for detection of viral contaminants in cells and viral seed stocks and for evaluating vaccine cell substrates by the contract testing organization BioReliance.
The more important sequella of the porcine circovirus disclosures may therefore be the proactive use of these new and powerful virus detection techniques for ensuring the viral safety of production cell banks, going forward.

Friday, June 10, 2011

Small, non-enveloped viruses: number 1 threat to biologics manufacture

by Dr. Ray Nims

Perhaps surprisingly, few types of viruses have infected biologics manufacture since the 1980s when the first recombinant proteins began to be produced in mammalian cells. While the list of contaminating viruses has included some relatively large enveloped and non-enveloped viruses (Reovirus type 2, epizootic hemorrhagic disease virus, Cache Valley virus, human adenovirus), by far the most problematic contaminants have been the small non-enveloped viruses. Why? For the most part, the contaminations involving the larger viruses have been attributed to the use of non-gamma irradiated bovine serum or to operators conducting open vessel manipulations. Remediating the manufacturing processes to include gamma irradiation of the serum (or elimination of the use of serum altogether), and eliminating wherever possible open vessel operations should mitigate the risk of experiencing these viruses.

Now we come to the small non-enveloped viruses, the real problem. Foremost among these has been murine minute virus (MMV). This 20-25 nm non-enveloped parvovirus has infected biologics manufacturing processes using Chinese hamster cell substrates on at least four occasions, affecting at least three different manufacturers (Genentech, Amgen, and Merrimack). In each case, the source of the contamination has been unclear, making remediation of the processes difficult. Due to the ability of these viruses to survive on surfaces and their resistance to inactivation by detergents and solvents, eliminating the agent from contaminated facilities may require drastic measures such as fumigation with vaporous hydrogen peroxide .

A second problem virus is the 27-40 nm non-enveloped calicivirus, vesivirus 2117. This is the virus that was found to have infected the Genzyme Allston manufacturing facility in 2009. The same virus had appeared already once in the past, at a manufacturing facility in Germany. Both of the infected processes involved Chinese hamster production cells and both involved the use of bovine serum at some point in the manufacturing process. Whether or not the animal-derived material was the actual source of the infection was not proven in either case. Unfortunately, if the source was the bovine serum, gamma irradiation probably would not mitigate the risk, as gamma irradiation is less effective for inactivating the smaller non-enveloped viruses. This is another virus that may be able to survive on facility surfaces. As in the case with MMV, ridding a manufacturing facility of vesivirus may require entire facility fumigation with vaporous hydrogen peroxide, as was done at Genzyme.

Another problem virus is the 17-20 nm porcine circovirus that was found to contaminate a rotavirus vaccine in 2010. This virus was thought to have originated in contaminated porcine trypsin used in the manufacturing process. Wouldn’t this contaminant have shown up in the raw material testing done for the trypsin, or in the extensive cell bank testing required for vaccine production substrates? The answer is no. The circovirus would not have been detected using the 9CFR-based detection methods used for trypsin at this time (and at present). And the required testing for cell banks used to produce vaccines would not have detected this particular virus. To make matters worse, gamma irradiation of the trypsin would not be expected to inactivate this virus. How can we mitigate the risk of this virus going forward? As described in a previous posting, manufacturers may need to apply specific nucleic acid tests for the circovirus as part of the raw material release process for trypsin.

These and other small non-enveloped viruses represent the greatest risk for biologics manufacturing because they are more difficult to inactivate in raw materials, and more difficult to eradicate from the facility once infected, and because the source of the infection is not always clear. There must be analogous small-non-enveloped bacteriophage lurking out there that represent, for the same reasons, special threats to the fermentation industry.

Thursday, May 6, 2010

Epizootic hemorrhagic disease virus: a future troublemaker?


Epizootic hemorrhagic disease virus (EHDV) is a double-stranded RNA virus of family Reoviridae, genus Orbivirus. This is a non-enveloped virus of approximately 60-80 nm size. This arbovirus is transmitted by a biting midge of genus Culicoides, and is closely related to another Orbivirus, the bluetongue virus. Two serotypes are endemic to cattle in North America (EHDV-1 and EHDV-2); the infections caused tend to be subclinical (asymptomatic) and therefore may go undetected.

Infections in cattle are more prevalent in areas of widespread infection within the local deer population. As shown in the figure below, the geographic distribution of infection of deer populations with EHDV and bluetongue virus includes areas within the high plains and mountain states in which bovine serum production is high (Utah, Kansas, etc.).

From Daniel Mead, Risk of Introduction of New Vector-borne Zoonoses

There have been recent outbreaks of epizootic hemorrhagic disease in cattle in Indiana (2006) as well as other states; in Israel (2006); and in Turkey (2007).

Basis of Concern: EHDV has been isolated previously from a biologics manufacturing process employing a Chinese hamster ovary (CHO) cell substrate (Rabenau et al. Contamination of genetically engineered CHO-cells by epizootic haemorrhagic disease virus (EHDV). Biologicals 21, 207-214, 1993). The infection was presumed, but not proven, to originate from use of a contaminated bovine serum in the manufacturing process.

Regulatory Expectations. EHDV is not mentioned specifically in 9CFR 113.47 (Detection of extraneous viruses by the fluorescent antibody technique as a virus of concern for raw materials of bovine origin), although this regulation requires testing for the closely related bluetongue virus. EHDV would be expected to cause cytopathic effects in Vero cells, one of the detector cells used in the 9CFR 113.47 assay, therefore this assay should detect the virus in grossly contaminated bovine sera.

Mitigating Risk. Elimination of animal-derived materials (esp. bovine sera) from the manufacturing process should reduce the risk of experiencing this virus. If this is not possible, treatment of the sera should be considered. Gamma-irradiation of the frozen serum at the dosages normally used should be effective, judging from results obtained with REO virus, another member of the family Reoviridae (Gauvin, 2009).

Conclusions. EHDV has been found previously to contaminate a biologics manufacturing process employing a CHO-cell substrate. It is therefore a virus of concern for the biopharmaceutical industry. Risk of infection of biological products with EHDV through use of bovine-derived materials such as bovine sera may increase in the event of future outbreaks of this disease in cattle from serum-producing regions of North America or Australia. Risk may be mitigated through implementation of gamma-irradiation of bovine sera and of viral purification processes capable of removing and inactivating non-enveloped viruses such as MMV and REO.

Friday, December 18, 2009

Got Animal-Derived Materials? Part 3

By Dr. Ray Nims

The assessment of viral and transmissible spongiform encephalopathy (TSE) risk for animal-derived materials (ADM) used in the manufacture of biologics, which we have described in previous blogs, is just one component of an overall ADM program that should be in place at each organization producing biologics.



A formal ADM program at a biologics manufacturer ideally should be driven by an overriding SOP or policy document. This should address the procedures in place for minimizing the use of ADM, for procuring ADM with a view to minimizing viral and TSE risk, and for assessing the viral and TSE risk associated with the ADM that are used. There are specific sourcing requirements for ADM that are intended to minimize TSE risk (EMEA/410/01 Rev. 2 October 2003), and these must be followed or justification provided if deviated from. The evaluation of ADM for the presence of viruses of concern is addressed in the Code of Federal Regulations, Title 9 Part 113.53. ADM viral and TSE risk assessments should be conducted according to a formalized procedure by teams of individuals with education, training, and/or experience appropriate for these tasks. The composition of the risk assessment teams and the qualifications of their members should be described in revisable controlled documents. The risk assessments themselves should be recorded in controlled documents which may revised as new information becomes available from the ADM suppliers. The ADM information that is used as part of the risk assessment process should be archived in a manner tying it to the risk assessment itself.


The existence of a formalized ADM program, qualified risk assessment teams, as well as reports documenting the individual ADM risk assessments may be the subject of regulatory scrutiny during periodic inspections or inspections tied to a new product application. This is especially likely if the product is intended for global distribution, as these ADM issues are specifically mentioned in EP (Chapter 5.1.7) and EMEA (EMEA/410/01 Rev. 2 October 2003) guidance.