Showing posts with label ADM program. Show all posts
Showing posts with label ADM program. Show all posts

Friday, October 28, 2011

Porcine circoviruses, vaccines, and trypsin

It has now been more than a year since the announcements by GlaxoSmithKline (GSK) and Merck of the presence of porcine circovirus (PCV) genomic material in their rotavirus vaccines.
The presence of the PCV viral sequences was, in both cases, provisionally attributed to the use of porcine trypsin during the culture of the cell substrates used in the manufacture of the vaccines. It has been reported that the genomic sequences were associated with low levels of infectious PCV in the GSK vaccine.     
As mentioned in a previous posting, an expected outcome of these disclosures was heightened regulatory expectations, going forward, for PCV screening of porcine raw materials and of Master and Working cell banks which were exposed to porcine ingredients (e.g., trypsin) at some point in their development. In January of 2011, the European Pharmacopoeia (Ph. Eur.) chapter 5.2.3 Cell substrates for production of vaccines for human use was revised to include the following instruction: Trypsin used for the preparation of cell cultures is examined by suitable methods and shown to be sterile and free from mycoplasmas and viruses, notably pestiviruses, <circoviruses> and parvoviruses.” The addition of circoviruses to the list of viruses of concern (previously, mainly bovine viral diarrhea virus and porcine parvovirus) in Ph. Eur. 7.2 was not unexpected, based on the rotavirus vaccine experience.
A more broad expectation going forward may also be that vaccine and biologics production cell banks be proactively screened for unexpected, perhaps previously undetectable, viruses using detection techniques such as the deep sequencing used initially to detect the PCV in the GSK rotavirus vaccine. A related technique referred to as massively parallel sequencing (Massively Parallel Sequencing (MP-Seq), a New Tool For Adventitious Agent Detection and Virus Discovery) has been adopted for detection of viral contaminants in cells and viral seed stocks and for evaluating vaccine cell substrates by the contract testing organization BioReliance.
The more important sequella of the porcine circovirus disclosures may therefore be the proactive use of these new and powerful virus detection techniques for ensuring the viral safety of production cell banks, going forward.

Wednesday, May 19, 2010

Using porcine trypsin in biologics manufacture?

by Dr. Ray Nims

On March 22, 2010, a press release from GlaxoSmithKline (GSK) announced that porcine circovirus 1 (PCV 1) DNA had been detected in their rotavirus vaccine. On May 6, Merck disclosed that it had found DNA fragments of both PCV types 1 and 2 in its rotavirus vaccine. The PCV 2 findings in Merck's vaccine may be of greater concern, due to the fact that this virus causes disease in pigs, while PCV 1 apparently does not. However, the relative amounts of PCV DNA found in the GSK vaccine appear to be much greater (the lab discovering the PCV DNA in the GSK vaccine did not detect any in the Merck vaccine), and the worry in this case is that some of the genomic material may be associated with infectious PCV 1 virus. In both cases, the presence of the PCV genomic material has been attributed to the use of porcine trypsin at some point in the vaccine manufacturing process.


The FDA convened an advisory committee meeting on May 7th to discuss the findings of PCV DNA in the two licensed rotavirus vaccines. What was the result of the advisory committee meeting? The advisory committee felt that the benefits of the rotavirus vaccines clearly outweigh the risks. This, added to the fact that there appears to be little human health hazard associated with these viruses, led to the FDA clearing the two vaccines for continued use on May 14th. The product labels will be updated to reflect the presence of the PCV DNA in these products. In the longer term, these products may need to be "reengineered" to remove the PCV DNA. This may involve the preparation of new Master and Working cell banks and thus will take some time.

Another likely outcome of the advisory committee’s meeting may be heightened expectations, going forward, for PCV screening of porcine raw materials and of Master and Working cell banks which were exposed to porcine ingredients (e.g., trypsin) at some point in their development. Porcine-derived raw materials which are used in the production of biologics are to be tested per 9 CFR 113.53 Requirements for ingredients of animal origin used for production of biologics for a variety of viruses of concern. In the case of ingredients of porcine origin, those viruses of concern are listed in 9 CFR 113.47 Detection of extraneous viruses by the fluorescent antibody technique. These include rabies, bovine viral diarrhea virus, REO virus, porcine adenovirus, porcine parvovirus, transmissible gastroenteritis virus, and porcine hemagglutinating encephalitis virus. While porcine circovirus may not be specifically mentioned in the 9 CFR requirements, it will be prudent to add a nucleic acid-based assay for detection of this virus to the porcine raw material testing battery going forward. Similarly, Master and Working cell banks exposed to porcine raw materials (e.g., trypsin) during their developmental history should be assayed for PCV prior to use.

Routine nucleic acid-based testing for PCV should detect the genomic sequences for this virus should intact infectious or non-infectious PCV be present in the test materials. Now that this virus is one of concern to the FDA and to the public, performing the appropriate raw material and cell bank testing for it will most likely become an expectation for vaccine and biologics manufacturers.

Friday, December 18, 2009

Got Animal-Derived Materials? Part 3

By Dr. Ray Nims

The assessment of viral and transmissible spongiform encephalopathy (TSE) risk for animal-derived materials (ADM) used in the manufacture of biologics, which we have described in previous blogs, is just one component of an overall ADM program that should be in place at each organization producing biologics.



A formal ADM program at a biologics manufacturer ideally should be driven by an overriding SOP or policy document. This should address the procedures in place for minimizing the use of ADM, for procuring ADM with a view to minimizing viral and TSE risk, and for assessing the viral and TSE risk associated with the ADM that are used. There are specific sourcing requirements for ADM that are intended to minimize TSE risk (EMEA/410/01 Rev. 2 October 2003), and these must be followed or justification provided if deviated from. The evaluation of ADM for the presence of viruses of concern is addressed in the Code of Federal Regulations, Title 9 Part 113.53. ADM viral and TSE risk assessments should be conducted according to a formalized procedure by teams of individuals with education, training, and/or experience appropriate for these tasks. The composition of the risk assessment teams and the qualifications of their members should be described in revisable controlled documents. The risk assessments themselves should be recorded in controlled documents which may revised as new information becomes available from the ADM suppliers. The ADM information that is used as part of the risk assessment process should be archived in a manner tying it to the risk assessment itself.


The existence of a formalized ADM program, qualified risk assessment teams, as well as reports documenting the individual ADM risk assessments may be the subject of regulatory scrutiny during periodic inspections or inspections tied to a new product application. This is especially likely if the product is intended for global distribution, as these ADM issues are specifically mentioned in EP (Chapter 5.1.7) and EMEA (EMEA/410/01 Rev. 2 October 2003) guidance.