Showing posts with label retrovirus. Show all posts
Showing posts with label retrovirus. Show all posts

Wednesday, September 22, 2010

Manufacturing Biologics with CHO Cells? What’s the Risk for Viral Contamination?

by Dr. Ray Nims

Chinese hamster ovary (CHO) cells are frequently used in the biopharmaceutical industry for the manufacture of biologics such as recombinant proteins, antibodies, peptibodies, and receptor ligands. One of the reasons that CHO cells are often used is that these cells have an extensive safety track record for biologics production. This is considered to be a well-characterized cell line, and as a result the safety testing required may be less rigorous in some respects (e.g., retroviral safety) than that required for other cell types. But how susceptible is the cell line to viral contamination?

There are a couple of ways of answering this question. One way is to examine, in an empirical fashion, the susceptibility of the cell type to productive infection by model exogenous viruses. This type of study has been conducted at least three times over the past decades by different investigators. Wiebe and coworkers (In: Advances in Animal Cell Biology and Technology for Bioprocesses. Great Britain, 1989; 68-71) examined over 45 viruses from 9 virus families for ability to infect CHO-K1 cells, using immunostaining and cytopathic effect to detect infection. Only 7 of the viruses (Table 1) were capable of infecting the cells. Poiley and coworkers (In Vitro Toxicol. 4: 1-12, 1991) followed with a similar study in which 9 viruses from 6 families were evaluated for ability to infect CHO-K1 cells as detected by cytopathic effect, hemadsorption, and hemagglutination. This study did not add any new viruses to the short list (Table 1). The most recent study was conducted by Berting et al. This study involved 14 viruses from 12 families. The viruses included a few known to have contaminated CHO cell-derived biologics in the past two decades, and therefore did add some new entities to the list in Table 1. Still, the list of viruses that are known to replicate in CHO cells is relatively short.



Chinese hamster cells possess an endogenous retrovirus which expresses its presence in the form of retroviral particles, however these particles have been consistently found to be non-infectious for cells from other animals, including human cells. This endogenous retrovirus therefore does not present a safety threat (Dinowitz et al. Dev. Biol. Stand. 76:210–207, 1992).

A second way of looking at the question of viral susceptibility of CHO cells is to examine the incidence and types of reported viral contaminations of manufacturing processes employing CHO cell substrates. This subject has been reviewed a number of times, most recently by Berting et al. The types of viral contaminants fill a fairly short list (Table 2). In most cases, the contaminations have been attributed to the use of a contaminated animal-derived raw material, such as bovine serum.

Sources: Rabenau et al.1993; Garnick 1996; Oehmig et al., 2003; Nims Dev. Biol. 123:153-164, 2006; Nims et al., 2008; Genzyme 2009..

Considering the frequency with which CHO cell substrates have been used in biologics production, this history of viral contamination is remarkably sparse. This is further testament to the overall safety of this particular cell substrate.






Tuesday, July 20, 2010

The nuts and bolts of retrovirus safety testing

by Dr. Ray Nims


Retroviruses may integrate into the genome of host animals. For this reason they are often referred to as endogenous viruses. Viral particles may or may not be expressed in the host cell. Expressed viruses may be infectious or non-infectious, and infectious virus may have tropism for (ability to infect) the same or different animal species relative to the host cell of origin. Infection results from a process of reverse transcription of the viral RNA leading to proviral DNA. To accomplish this, retroviruses have a specialized enzyme known as reverse transcriptase. Through this process (see figure below), the infected cell may be enlisted to produce viral progeny. Certain of the retroviruses are known to be oncogenic (e.g., human T-lymphotropic virus 1, feline leukemia virus, Raus sarcoma virus, etc.). Other retroviruses are of concern as a result of disease syndromes caused in humans (e.g., human immunodeficiency virus 1 in acquired immunodeficiency syndrome, and the possible role of xenotropic murine leukemia virus-related virus in chronic fatigue syndrome). From a biosafety standpoint, there is a worry that under some conditions, integrated viruses in cell substrates employed to produce biopharmaceuticals which do not normally express their presence may be induced to produce infectious particles.




Retrovirology safety testing for biologics manufacture can be confusing to those not familiar with the subject. Here is a brief overview.

Demonstrating retroviral safety typically involves a combination of the following three components:
• detecting infectious retrovirus through cell culture assays (XC plaque, cocultivation with mink lung or Mus dunni cells, etc.).
• measuring reverse transcriptase enzyme activities either through tritiated thymidine incorporation into templates, or through product amplification (PCR) techniques (PERT, etc.). This is not required if infectious retrovirus is detected.
• Visualizing and enumerating retroviral particles in supernatants or in fixed cells using transmission electron microscopy.

The various assays are applied during cell bank characterization (including end of production cell testing), during evaluation and validation of purification processes, and in some instances, as bulk harvest lot-release assays (results from 3 lots at pilot or commercial scale are submitted with the marketing application). For processes using well-characterized rodent cells known to contain endogenous retrovirus (CHO, C127, BHK, murine hybridoma), retroviral infectivity testing of the processed bulk is not required provided that adequate downstream clearance of the particles has been demonstrated.

Infectivity testing can be particularly confusing, due to the variety of cell-based assays employed. These include both direct and indirect assays. An example of a direct assay is the XC-plaque assay for ecotropic (a term meaning the virus is infectious for mouse cells) murine retroviruses. By definition, therefore, this would only be used to assay production cells of mouse origin.

Indirect assays are those in which a second endpoint is required to assess positive or negative outcome. Indirect assays include the various co-cultivation assays in which the test cells are co-cultivated with host cells such as mink lung, Mus dunni, and any of a number of human cells (see Table 4 within USP <1237> Virology Tests for a list of commonly used host cells). The indirect assays are performed to detect xenotropic retroviruses (retroviruses which are capable of infecting only animals other than the species of origin). The secondary endpoints used to assess outcome include reverse transcriptase activity, sarcoma virus rescue (S+L- focus formation assays), or enzyme immunoassay. The indirect assays are used in the retrovirus testing of mouse, hamster, monkey, and human production cell substrates. The selection of the host cell for the cocultivation assay is dependent upon the species of origin of the production cell, recognizing that cocultivation host cells from a species other than that of the production cells must be used. For production processes using rodent or other non-human cells, one or more human host cells are typically used for the cocultivation assay, as xenotropic retroviruses infectious for human cells are of obvious concern.

Still confused? Don’t worry. An individual with virology testing expertise can assist in designing the appropriate retrovirus testing battery for your biologic.

Wednesday, December 2, 2009

Should we care about…Vesiviruses?

By Ray Nims

Vesiviruses are single-stranded RNA viruses of family calicivirus, genus Vesivirus. They are non-enveloped and 30-40 nm in diameter, and the genus includes feline calicivirus, vesicular exanthema of swine virus, rabbit vesivirus, and San Miguel sea lion virus, as well as vesivirus isolate 2117.



source: Stewart McNulty, Queens University, Belfast, UK

Basis of Concern. Vesivirus 2117 has been isolated from biologics manufacturing processes employing Chinese hamster cell substrates on a number of occasions, the first being reported in 2003 (Oehmig et al., J. Gen. Virol. 84, 2837-2845, 2003), and additional occurrences being reported in 2008 and 2009.
The susceptibility of relevant manufacturing cell lines of different animal species to infection by this virus appears to be limited to the Chinese hamster. When infected, these cells undergo a relatively rapid lytic infection. The route of entry of the virus into biologics production processes has not been established with certainty, although the use of contaminated animal-derived materials, such as bovine sera, is considered to be the most likely source.

Regulatory Expectations. Vesivirus is not mentioned specifically in any regulatory guidance, as the detection of the 2117 isolate in biologics production has been reported only within the past decade. It is the intent of the guidance, however, that occurrences of viral contamination in biologics manufacturing be dealt with through implementation of specific testing methods as required to assure detection of future recurrences (e.g., ICH Q5A R1). In addition, it is expected that the route of entry of the virus be established and that the process be remediated so that future recurrences are prevented where possible (e.g., 1997 Points to Consider in the Manufacture and Testing of Monoclonal Antibody Products for Human Use).

Mitigating Risk. At least three Contract Testing laboratories have announced rapid nucleic acid-based detection assays for vesivirus isolate 2117 within the past year. These assays are available for raw material screening and for in-process testing of biologics bulk harvest samples. Elimination of animal-derived materials (esp. bovine sera) from the manufacturing process may help to reduce the risk of experiencing this virus. Should this not be possible, treatment of the sera or sera-containing media should be considered. Studies on the inactivation of caliciviruses indicate that UV treatment may be effective (Duizer et al., Appl. Env. Microbiol. 70, 4538-4543, 2004; de Roda Husman et al., Appl. Env. Microbiol. 70, 50989-5093, 2004). Gamma-irradiation at the dosages normally used does not appear to be effective, as might be expected for a virus of this relatively small size. Studies using MMV indicate that high-temperature short-time (HTST)-treatment of medium containing bovine serum is effective in inactivating this virus (Schleh et al., Biotechnol. Prog. 25: 854-860, 2009), and would by implication be effective for vesiviruses in general.

Conclusions. Vesivirus isolate 2117 preferentially infects Chinese hamster cells and has been found to contaminate biologics manufacturing processes employing this cell substrate. It is now a virus of concern for the biopharmaceutical industry. Risk of infection of biological products with vesiviruses through use of bovine-derived materials such as bovine sera may be mitigated through implementation of UV or HTST treatment of media containing the sera and of viral purification processes capable of removing and inactivating an even smaller non-enveloped virus such as MMV.