Showing posts with label SV40. Show all posts
Showing posts with label SV40. Show all posts

Monday, February 13, 2012

UV-C versus small, non-enveloped viruses


Small, non-enveloped viruses (especially the circoviruses, parvoviruses, picornaviruses, caliciviruses, and polyomaviruses) and bacteriophage with similar characteristics represent a special challenge to the biologics industry.
In fact, contamination events have occurred with each of these virus families; in some cases more than once. Within the Circoviridae, the primary concern has been the porcine circovirus discovered in rotavirus vaccine. At least four contamination events involving the parvovirus, mouse minute virus, have been reported. The calicivirus vesivirus 2117 has contaminated biologics manufacturing processes on at least two occasions. The picornaviruses are a threat which has yet to be realized in the manufacturing context; but a viral safety test conducted for a biologics cell bank was the scene of a contamination with equine rhinitis A virus. The polyomavirus SV40 was found to have survived the formaldehyde inactivation used in the preparation of polio vaccines and therefore made its way into the doses of vaccine delivered to millions of individuals during the decade between 1955 and 1965 (being born in 1952, it is possible that the author received such tainted vaccine!).
The contamination events described above are, at least in part, a reflection of the ability of these viruses to withstand conditions that would lead to inactivation of other types of viruses. Inactivation strategies that are typically employed for viral safety include chemical (low pH, high pH, disinfectants, solvents, detergents, etc.) and physical (heat, irradiation, pressure, etc.) means. In a previous posting, the efficacy of gamma irradiation for inactivating various types of viruses within frozen animal serum was discussed. The use of UV-A in combination with riboflavin has also been discussed previously.
It is perhaps fortunate that the efficacies of different inactivation approaches are in many cases complementary. For instance, it appears that the efficacy of gamma irradiation for inactivation of viruses decreases as viral particle size decreases (although this relationship is not strictly linear). The outcome of this is that gamma irradiation does not appear to be particularly effective for inactivating small, non enveloped viruses from the circovirus, parvovirus, and polyomavirus families. On the other hand, ultraviolet radiation in the C range (254 nm is the most commonly employed wavelength) appears to be more effective for the inactivation of smaller viruses than for larger viruses (or bacteria).
The table below is a compilation of the UV-C inactivation constants (K, defined as the log10 reduction in titer per mJ/cm2 fluency) for various families of small, non-enveloped viruses. These K values represent inactivation of the viruses in a variety of matrices, ranging from water to protein-containing matrices such as albumin or complete culture medium). These results suggest that UV-C irradiation may be a viable approach for inactivating many of these problem viruses in raw materials or process intermediates used in biologics manufacture.

references for K values: * Lytle and Sagripanti 2005, ¶ Kowalski et al. 2009; † Maier 2007. The other values are the mean K values assembled by the author from the inactivation literature.
The one exception appears to be the polyomaviruses, which appear to be relatively resistant to the inactivating effects both of gamma irradiation and UV-C irradiation. This family of viruses may best be inactivated using high-temperature short-time treatment (HTST), though the efficacy of this approach for the polyomaviruses has yet to be demonstrated empirically.

Wednesday, October 12, 2011

Ridding serum of viruses with gamma irradiation: part 2

by Dr. Ray Nims

In a previous posting, we described the susceptibility of viruses from various families to inactivation in frozen serum treated with gamma irradiation (data from the literature). Gamma irradiation is a commonly employed risk mitigation strategy for biopharmaceutical manufacture, and indeed the European Agency for the Evaluation of Medicinal Products in its Note for guidance on the use of bovine serum states that some form of inactivation (such as gamma irradiation) is expected. The use of non-treated serum in the production of biologics for human use must be justified, due to the potential for introducing a viral contaminant through use of this animal-derived material.

But how effective is this particular risk mitigation strategy? To answer this, we expressed the susceptibility to inactivation by gamma radiation for a series of 16 viruses in terms of log10 reduction in titer per kiloGray (kGy) of gamma radiation. With this value in hand, one may easily calculate the log10 reduction in titer of a given virus which might be expected following irradiation of frozen serum at any given kGy dose (serum is typically irradiated at a dose of 25-40 kGy).

The next step is to try to understand the results obtain with this relatively limited series of viruses, so that we may extrapolate the results to other viruses. If we take a look at the viral characteristics that might confer susceptibility to inactivation by gamma irradiation, will we find what we are looking for?

Viral characteristics that have been postulated to contribute to susceptibility or resistance to inactivation by gamma irradiation include: 1) radiation target size (genome size, particle size, genome shape, segmentation of the genome); 2) strandedness (in double stranded genomes the genomic information is recorded in duplicate, so loss of information on one strand may not be as damaging as it would be in the case of a single stranded genome); 3) presence or absence of a lipid envelope (non-enveloped viruses are resistant to a variety of chemical and physical inactivation approaches); and 4) genome type (RNA vs. DNA). The characteristics for our series of 16 viruses are displayed in the following table (click on table to enlarge).



For evaluating the contribution of radiation target size, we are able to make use of quantitative values available for each virus for genome size (in nucleotides) and particle size (in nm). Plotting genome size vs. log10 reduction in titer per kGy yields the results shown below. The coefficient of determination obtained is just 0.32, suggesting that factors other than (or in addition to!) genome size in nucleotides must be important..



A somewhat better concordance is obtained between particle size and log10 reduction in titer per kGy as shown below. The fit line in this case is non-linear, with a coefficient of determination of 0.60.



The contributions of genome type (RNA vs. DNA), genome strandedness, and lipid envelope (present or absent) to susceptibility to inactivation by gamma irradiation appear to be minimal, within this limited series of viruses. As a result, we are left with the conclusion that the most clear, albeit incomplete, determinant of susceptibility to inactivation by gamma irradiation appears to be particle size. This probably explains the resistance to inactivation displayed by the extremely small viruses such as circoviruses, parvoviruses, and caliciviruses. It is less clear why the polyomaviruses (e.g., SV-40 at 40-50 nm) are so resistant to gamma irradiation while certain of the picornaviruses (25-30 nm) are less resistant to inactivation. More work in this area is needed to better understand all of the factors that contribute to susceptibility to gamma radiation inactivation in viruses and bacteriophage.

< This information was excerpted in part from Nims, et al. Biologicals (2011) >

Monday, September 12, 2011

Ridding serum of viruses with gamma irradiation: part 1

by Dr. Ray Nims

Blood serum, while at times required as a medium component for cell growth in vitro, is an animal-derived material that can introduce contaminating viruses such as Cache Valley virus, REO virus, vesivirus, and epizootic hemorrhagic disease virusinto a biological product. If animal serum must be used in upstream manufacturing processes, the risk of introducing a virus may be mitigated by gamma irradiation of the frozen serum prior to use. How effective is this treatment, and against which viruses?

To answer this question, I have surveyed the literature from the past two decades. A number of investigations have been conducted and the results are in the public domain. The most useful of these studies have examined the dose-response relationships for viral inactivation (rendering of the virus as non-infectious) by gamma irradiation.

In the table below, I have assembled the results obtained for 7 viruses, including four that might be expected to be found in bovine serum: (bovine viral diarrhea virus [BVDV], infectious bovine rhinotracheitis virus [IBR], respiratory-enteric orphan virus [REO virus], and parainfluenza type 3 virus [PI3]). The other three (canine adenovirus, porcine parvovirus [PPV], and mouse minute virus [MMV]), while perhaps not expected to be found in bovine serum, have been studied as model viruses for the adenovirus and parvovirus families (click on table to enlarge).

The efficacy of gamma irradiation for viral inactivation is reported as log10 reduction in titer per kGy, rather than the more commonly employed D10 (Mrad dose required to reduce the titer by 1 log10), as I find the former value to be more useful. To estimate the effectiveness of a given dose of gamma radiation for inactivation of a virus, just multiply the dose in kGy by the log10 reduction in titer per kGy value from the table. The result is the number of logs of inactivation estimated to be achieved for that virus at that radiation dose.

These data tell us that the mid- to large-sized viruses BVDV, IBR, PI3, REO, and CAV should be readily inactivated at the gamma radiation doses normally applied to frozen serum for risk mitigation (25-45 kGy). On the other hand, the two parvoviruses, PPV and MMV, are more difficult to inactivate, presumably due to their small size. Parvoviruses are often used to challenge viral removal and inactivation processes due to their size and lack of an envelope. Higher kGy dose levels may increase the effectiveness of inactivation for these viruses, although at such levels the performance of the animal serum being irradiated may be adversely impacted.

Gamma-irradiation can effectively mitigate the risk of introducing other potential contaminants of bovine serum, including Cache Valley virus, blue tongue virus, and epizootic hemorrhagic disease virus. Like the parvoviruses, however, other relatively small non-enveloped viruses of the calicivirus, picornavirus, polyomavirus, and circovirus families may represent cases where gamma irradiation is less effective at the doses normally applied. Other means of mitigating the risk associated with these viruses may need to be considered.

< This information was excerpted in part from Nims, et al. Biologicals (2011) >


Information sources: Daley et al., FOCUS 20(3):86-88, 1998; Wyatt et al. BioPharm 1993: 6(4):34-40; Purtel et al., 2006; Hanson and Foster, Art to Science 16:1-7, 1997; Hyclone Labs Art to Science 12(2): 1-6, 1993; Gauvin and Nims 2010; Plavsic et al. BioPharm 2001: 14(4):32-36.

Wednesday, June 9, 2010

Riboflavin plus UVA irradiation: another inactivation approach to consider

by Dr. Ray Nims

Short-wavelength ultraviolet irradiation (UVC) has been used for years to disinfect air, surfaces, and thin liquid films because it is effective in inactivating a variety of bacteria, protozoa, phage, and viruses. More recently, UVC (100-280 nm) irradiation has been shown to be useful for viral risk mitigation in biologics manufacturing. UVC-treatment of culture media and other liquid reagents has been demonstrated to inactivate potential adventitious viral contaminants, including those which are resistant to inactivation by other physical means (e.g., murine minute viruscalicivirus; and porcine parvovirus and SV-40 [Wang et al., Vox Sanguinis 86: 230-238, 2004]).

Another approach that has been used recently, especially in the ophthalmologic and blood products communities, is UVA (315-400 nm) in the presence of the photosensitizer riboflavin. Riboflavin interacts with nucleic acid and photosensitizes to damage by UVA leading to direct electron transfer, production of singlet oxygen, and generation of hydrogen peroxide. The treatment results in oxidation and ring-opening of purines and in DNA strand breakage. The advantage of riboflavin over other photosensitizers (e.g., methylene blue, psoralens, etc.) is that riboflavin (vitamin B2) is an endogenous physiological substrate.

 
The photosensitizer interacts with nucleic acids.
Upon irradiation, the results may include cross-linking, mutation, or strand breakage.
Source: Bryant and Klein


Riboflavin/UVA treatment has been explored in ophthalmology applications such as infectious keratitis and keratomycosis. The typical treatment paradigm involves application of a solution of 0.1% riboflavin (as riboflavin-5-phosphate) followed by irradiation using 365 nm light (5 to 10 J/ml). The approach has shown effectiveness against a variety of pathogenic bacteria, including drug-resistant strains. Effectiveness against fungal pathogens requires combination therapy with amphotericin B.

In the blood products community, photosensitizer/UV treatment is being explored for pathogen reduction. For instance, riboflavin/UV treatment is being evaluated for platelet and plasma pathogen reduction, for prevention of graft versus host reactions, and for pathogen reduction in whole blood products. In the proprietary application (Mirasol PRT®), blood product pools are combined with riboflavin (final concentration 50 µM) and the solutions are irradiated with 6.24 J/ml broadband (265-370 nm) UV light. The technology has been shown to be effective for a variety of pathogenic bacteria and viruses (see Table 3 in the review by Bryant and Klein).

Will this approach be useful in the biopharma industry? It appears so. Recently, irradiation with UVA (365 nm) light in the presence of 50 µM riboflavin has been evaluated for controlled inactivation of gene transfer (adenovirus, adeno-associated virus, lentivirus) virus preparations. Complete inactivation was obtained in each case within 90 minutes.

Thursday, January 14, 2010

Is Bovine Polyoma Virus Getting You Down?

By Dr. Ray Nims

Bovine polyomavirus (BPyV) is a double-stranded DNA virus of genus Polyomavirus. It is non-enveloped and 40-50 nm in diameter, and is a member of the same genus as SV40.

Basis of Concern. The Polyomavirus genus was so-named due to the ability of the viruses to cause tumors in susceptible host animals. Genomic sequences for the potentially oncogenic bovine polyomavirus have been detected with high frequency in bovine sera, regardless of geographic region of origin (Shuurman et al., J. Gen. Virol. 72: 2739-2745, 1991; Wang et al., New Zealand Vet. J. 53: 26-30, 2005).

Regulatory Expectations. Bovine polyomavirus is not mentioned specifically in 9CFR 113.47, Detection of extraneous viruses by the fluorescent antibody technique, as a virus of concern for raw materials of bovine origin. As a result, BPyV is not specifically probed for during most 9CFR 113.53-based raw material viral infectivity testing, and this test most likely would not be capable of detecting BPyV if present in the test material. The EMEA Note for Guidance on the use of Bovine Serum in the Manufacture of Human Biological Medicinal Products (CPMP/BWP/1793/02) states that sera users are “encouraged to apply infectivity assays for BPyV and to investigate methods for inactivation/removal of BPyV in order to limit or eliminate infectious virus from batches of serum”.

Mitigating Risk. In actual practice, the available infectivity assays for BPyV involve numerous passages using a bovine detector cell such as MDBK and are somewhat lengthy and insensitive, though more sensitive assays are under development. Cell-based infectivity testing for BPyV is not always being performed by users for each batch of bovine serum. The lack of a rapid and sensitive infectivity assay also means that viral inactivation studies for BPyV are not practically possible. While another polyomavirus such as SV40 could be used in viral inactivation/removal studies as a proxy for BPyV, in actual practice the murine parvovirus MMV (mouse minute virus) is more typically used as a worst-case model virus for such studies since it is non-enveloped and even smaller than BPyV. The few studies performed with SV40 indicate that gamma-irradiation at the dosages normally employed is not effective at inactivating this virus, as might be expected for a virus of this relatively small size (e.g., Gauvin, 2009). On the other hand, it has been shown (Wang et al., Vox Sanguinis 86: 230-238, 2004) that UVC treatment is effective in inactivating SV40. Note: since originally authoring this blog, I have come across a great number of UV-inactivation papers which indicate that polyomaviruses, and SV-40 in particular, appear to be relatively resistant to UV inactivation. The Wang et al. result may represent an outlier. I will address this in a future blog. Studies using MMV indicate that high-temperature short-time (HTST)-treatment of medium containing bovine serum is effective in inactivating this virus (Schleh et al., Biotechnol. Prog. 25: 854-860, 2009), and would by implication be effective for BPyV.

Conclusions. At the present time, infectivity screening of bovine sera for BPyV is not always being performed, and it is believed that the high frequency of detection of genomic material in bovine sera may not reflect a similarly high frequency of infectious BPyV. Risk of infection of biological products with BPyV through use of bovine-derived materials such as bovine sera may be mitigated through implementation of UVC- or HTST-treatment of media containing the sera and of viral purification processes capable of removing and inactivating an even smaller non-enveloped virus such as MMV.