Showing posts with label ICH Q5A. Show all posts
Showing posts with label ICH Q5A. Show all posts

Monday, June 18, 2012

Viral clearance studies …. are they needed for proteins produced using bacterial or yeast fermentation processes?

In E. coli or Pichia pastoris-based bioproduction of recombinant proteins, there are no suitable host cells for amplification of viruses that are infectious for humans. Bacteria such as E. coli and yeast such as P. pastoris can only support the growth of certain bacteriophage or yeast viruses, respectively. These types of viruses are not infectious for humans or animals.
The potential for viral infection of a bacterial cell process or a yeast cell process used for production of a recombinant protein is therefore a business risk, not a patient safety risk. This is the reason why case studies of bacteriophage infection of bacterial fermentation processes or of viral contamination of yeast cell processes have not appeared in the literature (or in the news). Unlike virus contamination of animal cell-based production processes, the events involving bacterial or yeast do not have patient safety implications. When a bacteriophage or yeast virus contamination occurs, manufacturers quietly go about the business of restarting the fermentation. Remediation and prevention of future occurrences is driven primarily by business concerns, as opposed to regulatory concerns.
Manufacturers of recombinant proteins produced using bacterial or yeast cell substrates are not required to conduct cell line viral testing (though phage induction studies may be performed as part of bacterial cell line characterization – to mitigate business risk!), nor are they required to conduct lot-by-lot viral testing of bulk harvest samples. Such requirements are mandated for production processes using animal or human cells. As the title of the document “Quality of Biotechnological Products: Viral Safety Evaluation of Biotechnology Products Derived from Cell Lines of Human or Animal Origin” indicates, the ICH Q5A (R1) guidance mandating such testing is clearly directed toward manufacturing processes utilizing the types of cells which may support growth of viruses infectious for human or animal cells. This ICH document also provides guidance on the conduct of viral clearance studies.

Viral clearance studies are intended to provide evidence of the ability of downstream purification steps of a manufacturing process to remove or inactivate viruses that potentially may contaminate the process, make their way into final product, and represent a health risk to patients. As such, the evaluation typically involves both relevant viruses (i.e., viruses that are known to contaminate these kinds of processes) and model viruses (i.e., viruses representative of the types of viruses that could contaminate these processes). In the case of bacteria- and yeast-based manufacturing processes, the relevant viruses (bacteriophage and yeast viruses, respectively) are not infectious for humans or animals. In addition, there are no model viruses that are capable of infecting these kinds of cells that are of concern for humans or animals. Therefore, viral clearance studies are typically not required or conducted.

Are there any circumstances where a bacterial or yeast fermentation process could be expected to harbor a virus capable of infecting humans? The only that I can imagine is a process utilizing primary or secondary animal-derived raw materials in rather large quantities. The worry would not be that viral amplification might occur, but that some carryover of surviving animal viruses to the final product might be possible. The use of such animal-derived materials by a manufacturer of a therapeutic protein must be justified based on risk analysis. If substantial risk is introduced by the use of such raw materials, then perhaps a raw material treatment approach would need to be validated.

In the absence of the use of animal derived materials or plant materials not subject to processing steps that would inactivate contaminating animal viruses, incorporation and validation of viral clearance steps into protein production processes using bacteria or yeast cell substrates is not expected, nor would this be of practical value in assuring patient safety.

Thursday, May 24, 2012

Update: New USP General Chapter 1050.1


There is a new general chapter being prepared for inclusion in the United States Pharmacopeia (USP). It will be entitled “Design, Evaluation, and Characterization of Viral Clearance Procedures” and will be numbered 1050.1 to associate it with the current General Chapter <1050>.

A little history is called for to make this association more clear. Chapter <1050> first appeared in supplement 10 of USP23-NF-18 in 1999. It was, and still is, a verbatim copy of the International Conference on Harmonisation (ICH) document Q5A R1. In fact, it has an identical title: “Viral Safety Evaluation of Biotechnology Products Derived from Cell Lines of Human or Animal Origin”.

In many respects, U5P Chapter <1050> (and ICH Q5A R1) is similar in content and philosophy to the 1993 US FDA Points to Consider (PTC) document entitled "Characterization of Cell Lines used to Produce Biologicals".  Like the 1993 PTC, USP Chapter <1050> expresses an overall safety paradigm composed of three orthogonal approaches. These approaches may be summed up as consisting of testing of raw materials and cell banks, testing of unprocessed bulk harvest, and evaluation of viral clearance steps used during purification. Also like the 1993 PTC, Chapter <1050> describes potential sources of viral contamination, including raw materials and the cell substrate. The scopes of the documents are similar, applying to products derived from cell lines. Transmissible spongiform encephalopathy agents and live or inactivated intact viral vaccines and gene therapy vectors are out of scope and are covered by other guidance documents.

Due to the potential for introducing a viral contaminant through use of an infected cell substrate (e.g., SV40 in polio vaccine, or more recently PCV-1 in rotavirus vaccine), USP Chapter <1050> and the 1993 PTC address the concept of cell banking and the extensive viral testing that is required for cell banks at the Master Bank, Working Bank, and Limit of Cell Growth levels. The second approach of the safety paradigm is the requirement for lot-to-lot testing of the unprocessed bulk harvest. Testing is done at this level as opposed to purified product since purification is designed to eliminate viruses and therefore might preclude the manufacturer from discovering a viral infection. It is the intent of the regulatory agencies that potential opportunities for introduction of a viral contaminant be investigated and remediated, so testing is done prior to purification. The viral testing that is required for unprocessed bulk harvest is a subset of the tests done on the cell banks.

Both USP Chapter <1050> and the 1993 PTC discuss the limitations of viral testing as a sole means to assure viral safety, and this provides a segue for discussion of the need for viral clearance steps and the validation of the ability of such steps to clear viruses from the product. In fact, USP Chapter <1050> does a good job of providing the fundamentals of viral clearance evaluation, however there was a feeling expressed by some in the industry (and especially Mike Rubino, a member of the original ad hoc advisory panel for this chapter) that more detailed guidance on experimental design was needed. This, by the way, is true in general about Chapter <1050> (and IQH Q5A Rl upon which USP <1050> was based) that it is strong on philosophy but weak on specific methodological detail.

The original USP ad hoc advisory panel for Chapter <1050> revision was assembled with the purpose of updating the chapter to include this missing experimental detail. The panel went through each section of the existing chapter and added the detail that was felt to be lacking. This was done with the overall mandate to avoid introducing any new language that might conflict with the original language (and ICH Q5A Rl). The revised Chapter <1050> was published in the Pharmacopeial Forum in 2010. Responses obtained indicated that there was reluctance to modify in any way the language of this chapter without also modifying ICH Q5A. The situation as of February 2011 was described in an earlier posting.

As a result, the USP decided to keep Chapter <1050> intact and identical to ICH Q5A Rl.  A new ad hoc advisory panel was assembled with the purpose of producing a new chapter in the general information series that would be a companion to the existing Chapter <1050>. The new chapter received the number 1050.1 and provided the vehicle for adding the desired methodological detail.

The proposed new General Chapter <1050.1>, entitled "Design, Evaluation, and Characterization of Viral Clearance Procedures" consists of some background information on process evaluation and process characterization, then launches into experimental design for evaluating both inactivation and removal steps. The latter section includes some specific experimental design flow charts addressing virus removal by filtration and chromatography and virus inactivation. Along with the flow charts describing the design of the studies are description of the methods used to assess potential cytotoxicity or interference caused by the process materials themselves.

The subheadings of the background information are shown in the text box below.



The information presented under these subheadings reflects the panel's understanding of current regulatory expectations. Regulatory input obtained during the public comment period will assure that the panel's perceptions were correct. Discrepancies will be corrected as required.

Finally, a goal of the new chapter was to provide an updated list of the types of viruses that have been and may be used in viral clearance evaluations. For studies enabling clinical trials, it is common for evaluations to use a parvovirus such as MMV and a retrovirus such as X-MuLV as models. This provides a small non-enveloped virus to challenge filtration steps, as well as an enveloped virus to assess inactivation steps designed for lipid enveloped viruses. For BLA enabling studies, a few additional viruses may be selected from this updated list, keeping in mind that the viruses should represent a diversity of characteristics (envelope status, genome type, size, etc.).

The intention of the new chapter <1050.1> is that manufacturer’s may use the methods as appropriate to their own processes and will be able to cite the guidance in their descriptions of the study design. At the present time, no guidance having sufficient experimental design descriptions is available to cite in this respect. The planned date for publication of the proposed chapter in the Pharmacopeial Forum is January 2013.

Wednesday, February 16, 2011

What's up with USP Chapter 1050?

by Dr. Ray Nims

United States Pharmacopeia (USP) general chapter <1050> Viral Safety Evaluation of Biotechnology Products Derived from Cell Lines of Human or Animal Origin originally appeared in supplement 10 to USP23-NF18 in May 1999 and was at that time essentially a verbatim adoption of the International Conference of Harmonization (ICH) Guideline Q5A (R1) having the same title.

The chapter describes the methods of evaluating the viral safety of biotechnology pharmaceutical products that are manufactured using cell lines of human or animal origin.

In 2006, an ad hoc advisory panel was assembled by the USP and tasked with revision of this chapter. The goals were to update the chapter and, more specifically, to add greater detail in the viral clearance validation section. The hope was that a user following the recommendations set forth in the general chapter would have greater confidence that viral clearance validation data generated would prove acceptable to the regulatory agencies.

The organization of the revised chapter <1050> was not changed. It comprised the following main sections: 1) Introduction; 2)Potential sources of viral contamination; 3) Cell line qualification: testing for viruses; 4) Testing for viruses in unprocessed bulk; 5) Rationale and action plan for viral clearance studies and viruses tests on purified bulk; and 6) Evaluation and characterization of viral clearance procedures. The changes proposed for the initial 5 sections were minor and primarily reflected attempts to update the chapter and to align the chapter more closely with FDA guidance documents. The most extensive changes were to section 6, in keeping with the goals described above.

The revised chapter was published for public comment in Pharmacopeial Forum 36(3) in the fall of 2010. Comments received as a result of the public review apparently suggested that a more extensive update of the chapter was warranted. At any rate, the revised chapter was not made effective during the USP’s 2005-2010 revision cycle. A new ad hoc advisory panel now being assembled as part of USP's 2010-2015 revision cycle will take over the responsibility for moving the revision of this chapter forward.

Wednesday, September 1, 2010

Is Clarence calculating clearance correctly?

by Dr. Ray Nims

As pointed out by Dr. Rudge in a recent posting “Do we have clearance, Clarence?”, spiking studies conducted for the purpose of validating impurity clearance are often done at only one spiking level (indeed often at the highest possible impurity load attainable). This is especially true for validation of adventitious agent (virus and mycoplasma) clearance in downstream processes. The studies are done in this way in order to determine the upper limit of agent clearance (in terms of log10 reduction) by the process. Such log10 reduction factors from individual process steps are then summed in order to determine the overall capability of the downstream processes to clear adventitious agents. The regulatory agencies have fairly clear expectations around such clearance capabilities which must generally be met by biologics manufacturers.

The limiting factor in such clearance studies is typically the amount or titer of the agent that is able to be spiked into the process solution, which is determined by: 1) the titer of the stock used for spiking, and 2) the maximum dilution of the process solution allowed during spiking (typically 10%). Under these circumstances, as Scott points out, there is a possibility that the determined clearance efficiency (i.e., the percentage of the load which is cleared during the step) is an underestimate of the actual clearance that might be obtained at lower impurity loading levels.

Adventitious agent clearance is comprised of two possible modalities, removal and inactivation. Removal refers to physical processes designed to eliminate the agent from the process solution, usually through filtration or chromatography. Removal efficiency through filtration would not be expected to display variability based on impurity loading. On the other hand, chromatographic separation of agents (by, for example, ion-exchange columns) may display saturation at the highest loadings, and therefore use of the highest possible loading levels may result in underestimates of removal efficiency at lower (i.e., more typical) impurity levels.

Inactivation refers to physical or chemical means of rendering the agent non-infectious. Agent inactivation is not always a simple, first-order reaction. It may be more complex, with a fast phase 1 stage of inactivation followed by a slow phase 2 stage of inactivation. An inactivation study is planned in such a way that samples are taken at different times so that an inactivation time curve can be constructed. As with removal studies, the highest possible impurity levels are typically used to determine inactivation kinetics.

Source: Omar et al. Transfusion 36:866-872, 1996

While the information obtained through clearance studies of this type may be incomplete from the point of view of understanding the relationships between impurity loading levels and clearance efficiency, the results obtained are consistent with the regulatory expectation that the clearance modalities be evaluated under worst-case conditions. Therefore, at least in the case of adventitious agent clearance validation, I would say that Clarence is calculating clearance correctly!

Tuesday, July 20, 2010

The nuts and bolts of retrovirus safety testing

by Dr. Ray Nims


Retroviruses may integrate into the genome of host animals. For this reason they are often referred to as endogenous viruses. Viral particles may or may not be expressed in the host cell. Expressed viruses may be infectious or non-infectious, and infectious virus may have tropism for (ability to infect) the same or different animal species relative to the host cell of origin. Infection results from a process of reverse transcription of the viral RNA leading to proviral DNA. To accomplish this, retroviruses have a specialized enzyme known as reverse transcriptase. Through this process (see figure below), the infected cell may be enlisted to produce viral progeny. Certain of the retroviruses are known to be oncogenic (e.g., human T-lymphotropic virus 1, feline leukemia virus, Raus sarcoma virus, etc.). Other retroviruses are of concern as a result of disease syndromes caused in humans (e.g., human immunodeficiency virus 1 in acquired immunodeficiency syndrome, and the possible role of xenotropic murine leukemia virus-related virus in chronic fatigue syndrome). From a biosafety standpoint, there is a worry that under some conditions, integrated viruses in cell substrates employed to produce biopharmaceuticals which do not normally express their presence may be induced to produce infectious particles.




Retrovirology safety testing for biologics manufacture can be confusing to those not familiar with the subject. Here is a brief overview.

Demonstrating retroviral safety typically involves a combination of the following three components:
• detecting infectious retrovirus through cell culture assays (XC plaque, cocultivation with mink lung or Mus dunni cells, etc.).
• measuring reverse transcriptase enzyme activities either through tritiated thymidine incorporation into templates, or through product amplification (PCR) techniques (PERT, etc.). This is not required if infectious retrovirus is detected.
• Visualizing and enumerating retroviral particles in supernatants or in fixed cells using transmission electron microscopy.

The various assays are applied during cell bank characterization (including end of production cell testing), during evaluation and validation of purification processes, and in some instances, as bulk harvest lot-release assays (results from 3 lots at pilot or commercial scale are submitted with the marketing application). For processes using well-characterized rodent cells known to contain endogenous retrovirus (CHO, C127, BHK, murine hybridoma), retroviral infectivity testing of the processed bulk is not required provided that adequate downstream clearance of the particles has been demonstrated.

Infectivity testing can be particularly confusing, due to the variety of cell-based assays employed. These include both direct and indirect assays. An example of a direct assay is the XC-plaque assay for ecotropic (a term meaning the virus is infectious for mouse cells) murine retroviruses. By definition, therefore, this would only be used to assay production cells of mouse origin.

Indirect assays are those in which a second endpoint is required to assess positive or negative outcome. Indirect assays include the various co-cultivation assays in which the test cells are co-cultivated with host cells such as mink lung, Mus dunni, and any of a number of human cells (see Table 4 within USP <1237> Virology Tests for a list of commonly used host cells). The indirect assays are performed to detect xenotropic retroviruses (retroviruses which are capable of infecting only animals other than the species of origin). The secondary endpoints used to assess outcome include reverse transcriptase activity, sarcoma virus rescue (S+L- focus formation assays), or enzyme immunoassay. The indirect assays are used in the retrovirus testing of mouse, hamster, monkey, and human production cell substrates. The selection of the host cell for the cocultivation assay is dependent upon the species of origin of the production cell, recognizing that cocultivation host cells from a species other than that of the production cells must be used. For production processes using rodent or other non-human cells, one or more human host cells are typically used for the cocultivation assay, as xenotropic retroviruses infectious for human cells are of obvious concern.

Still confused? Don’t worry. An individual with virology testing expertise can assist in designing the appropriate retrovirus testing battery for your biologic.

Thursday, February 25, 2010

Hot Tubs and Bioreactors

By Dr. Ray Nims

Contaminating organisms which most commonly are under the radar for biopharmaceutical manufacturing operations include bacteria, mollicutes (mycoplasmas and acholeplasmas), and viruses. Various in-process and lot-release detection assays are mandated by the FDA and the International Conference on Harmonisation to ensure that such contaminants are detected in bulk harvests and/or final products as part of assuring patient safety (specified in ICH Q5A R1 and the 1993 Points to Consider in the Characterization of Cell Lines used to Produce Biologics). There is, however, an additional group of organisms which may threaten biologics production (one which is not normally associated with such manufacturing activities) namely, the Mycobacterium fortuitum complex.

The what?? The fortuitum complex is a group of relatively rapid-growing (non-tuberculosis) mycobacteria which is more typically associated with hot tub disease, and the contamination of industrial cutting fluids and foot baths used for pedicures. The group includes M. fortuitum, M. chelonae, M. abscessus, M. immunogenum, M. mucogenicum, M. peregrinum, and a few others. These mycobacteria, as well as other groups of non-tuberculosis mycobacteria, can be pathogenic in humans, even those who are immuno-competent. The organisms of the fortuitum complex represent a potential risk to the biopharma industry due to their propensity for forming biofilms, their ability to proliferate in water under relatively low nutrient conditions, their resistance to typical water disinfection methods, and their relatively slow growth in nutrient media.

                    Mycobacteria growing at the liquid/air
                       interface of a growth medium.


These characteristics render the organisms capable of existing in water piping and other surfaces in contact with water or aqueous media. Their slow growth in nutrient media may result in these agents being overlooked in biopharmaceutical manufacturing operations, especially when surveillance methods such as short-term bioburden assays are employed. A few cases of contaminated vaccines and tissue extracts have been reported in the literature (Mycobacterium chelonei in abscesses after injection of diphtheria-pertussis-tetanus-polio vaccine. Am. Rev. Respir. Dis. 1973 Jan; 107:1-8; Abscesses due to Mycobacterium abscessus linked to injection of unapproved alternative medication. Emerg. Inf. Dis. 1999; 5: 681-687).

Are there other examples? It is, unfortunately, difficult to estimate the frequency of occurrence of mycobacterial contamination in biologics manufacturing, since many episodes may lead to premature bioreactor termination, with little evidence to implicate a mycobacterium. It is also likely that episodes may have occurred without being reported in the literature.

Thursday, January 28, 2010

Eliminating those Pesky Viruses

By Dr. Ray Nims

As part of mitigating the risk of introducing viral contaminants into a product during manufacturing, biopharma companies must assess the overall risk from a variety of sources (cell substrate, animal-derived raw materials, upstream and downstream processes, etc.) and consider options for reducing such risk. For global submissions, this requirement is formalized within EP 5.1.7 Viral Safety. For domestic submissions, such risk assessment and mitigation is consistent with the philosophy of the US FDA as formalized within the 1993 Points to Consider in the Characterization of Cell Lines Used to Produce Biologicals; and ICH Q5A (R1) Viral Safety Evaluation of Biotechnology Products Derived From Cell Lines of Human or Animal Origin. 


A photomicrograph of the HIV virus from the CDC

The following options are available for reducing the risk of introducing a virus during manufacture of a biological product:

• Selection of a cell substrate with low inherent viral risk, and adequate characterization of the manufacturing cell substrate will reduce the risk associated with this important reagent.

• Elimination of the use of animal-derived raw materials and excipients will greatly reduce the risk of introduction of a virus, but of course this is not always possible.

• Where it is necessary to use an animal-derived material (ADM) in the manufacturing process, the following steps should be taken: (1) evaluate the viral risk associated with the ADM; (2) mitigate the viral risk through sourcing strategies, quality control testing at the source and/or at the biopharma, and implementation, where possible, of viral inactivation treatment (e.g., gamma-irradiation) of the ADM.

• Once an ADM has been incorporated into a reagent such as a culture medium, the reagent itself may be subjected to viral inactivation strategies such as UVC-treatment or high-temperature short-time (HTST) treatment.

• Avoidance of the use of open-vessel operations during upstream processes, as they provide entrance points for viruses.

• Implementation of in-process and lot release viral detection tests to provide early indications of a viral infection in an upstream process.

• Implementation and characterization of robust and efficacious viral purification strategies during downstream processing of the biologic.

It is an expectation of the regulatory agencies that each biopharma will employ a combination of the above options in order to assure the viral safety of their biological products. If a viral contamination event should occur during a manufacturing run, it should be thoroughly investigated, with the aim of identifying the source(s) of the contamination. The information learned during the course of investigation should be used to eliminate the source of the contamination, and mitigate the risk of any future similar recurrences of the contamination.

Thursday, January 14, 2010

Is Bovine Polyoma Virus Getting You Down?

By Dr. Ray Nims

Bovine polyomavirus (BPyV) is a double-stranded DNA virus of genus Polyomavirus. It is non-enveloped and 40-50 nm in diameter, and is a member of the same genus as SV40.

Basis of Concern. The Polyomavirus genus was so-named due to the ability of the viruses to cause tumors in susceptible host animals. Genomic sequences for the potentially oncogenic bovine polyomavirus have been detected with high frequency in bovine sera, regardless of geographic region of origin (Shuurman et al., J. Gen. Virol. 72: 2739-2745, 1991; Wang et al., New Zealand Vet. J. 53: 26-30, 2005).

Regulatory Expectations. Bovine polyomavirus is not mentioned specifically in 9CFR 113.47, Detection of extraneous viruses by the fluorescent antibody technique, as a virus of concern for raw materials of bovine origin. As a result, BPyV is not specifically probed for during most 9CFR 113.53-based raw material viral infectivity testing, and this test most likely would not be capable of detecting BPyV if present in the test material. The EMEA Note for Guidance on the use of Bovine Serum in the Manufacture of Human Biological Medicinal Products (CPMP/BWP/1793/02) states that sera users are “encouraged to apply infectivity assays for BPyV and to investigate methods for inactivation/removal of BPyV in order to limit or eliminate infectious virus from batches of serum”.

Mitigating Risk. In actual practice, the available infectivity assays for BPyV involve numerous passages using a bovine detector cell such as MDBK and are somewhat lengthy and insensitive, though more sensitive assays are under development. Cell-based infectivity testing for BPyV is not always being performed by users for each batch of bovine serum. The lack of a rapid and sensitive infectivity assay also means that viral inactivation studies for BPyV are not practically possible. While another polyomavirus such as SV40 could be used in viral inactivation/removal studies as a proxy for BPyV, in actual practice the murine parvovirus MMV (mouse minute virus) is more typically used as a worst-case model virus for such studies since it is non-enveloped and even smaller than BPyV. The few studies performed with SV40 indicate that gamma-irradiation at the dosages normally employed is not effective at inactivating this virus, as might be expected for a virus of this relatively small size (e.g., Gauvin, 2009). On the other hand, it has been shown (Wang et al., Vox Sanguinis 86: 230-238, 2004) that UVC treatment is effective in inactivating SV40. Note: since originally authoring this blog, I have come across a great number of UV-inactivation papers which indicate that polyomaviruses, and SV-40 in particular, appear to be relatively resistant to UV inactivation. The Wang et al. result may represent an outlier. I will address this in a future blog. Studies using MMV indicate that high-temperature short-time (HTST)-treatment of medium containing bovine serum is effective in inactivating this virus (Schleh et al., Biotechnol. Prog. 25: 854-860, 2009), and would by implication be effective for BPyV.

Conclusions. At the present time, infectivity screening of bovine sera for BPyV is not always being performed, and it is believed that the high frequency of detection of genomic material in bovine sera may not reflect a similarly high frequency of infectious BPyV. Risk of infection of biological products with BPyV through use of bovine-derived materials such as bovine sera may be mitigated through implementation of UVC- or HTST-treatment of media containing the sera and of viral purification processes capable of removing and inactivating an even smaller non-enveloped virus such as MMV.

Wednesday, December 30, 2009

Can Cache Valley Virus Trash Your Manufacturing?

By Dr. Ray Nims

Cache Valley virus is a single-stranded RNA virus of family bunyavirus, genus Bunyavirus. It is enveloped and nominally 80-120 nm in diameter. Cache Valley virus was first isolated in Utah in 1956 and is carried by mosquitoes. It has since been found to be a widespread virus, having been isolated in Texas, Michigan, North Carolina, Indiana, Virginia and Maryland, for example.



source: Nims et al., BioPharm. Int. 21: 89-94, 2008

Basis of Concern. Cache Valley virus is known to infect livestock, causing birth defects. There have been two reports of encephalitic disease in humans attributed to Cache Valley virus. This virus has been isolated from biologics manufacturing processes employing Chinese hamster cell substrates on a number of occasions from 2000 to 2004 (Nims et al., BioPharm. Int. 21: 89-94, 2008). The route of entry of the virus into biologics production processes has not been established with certainty, although the use of contaminated bovine serum is considered to be the most likely source. Thus far the virus has only been known to infect manufacturing processes employing bovine serum.

Regulatory Expectations. Cache Valley virus is not mentioned specifically in any regulatory guidance, as the detection of this virus in biologics production has been reported only within the past decade. It is the intent of the guidance, however, that occurrences of viral contamination in biologics manufacturing be dealt with through implementation of specific testing methods as required to assure detection of future recurrences (e.g., ICH Q5A R1). In addition, it is expected that the route of entry of the virus be established and that the process be remediated so that future recurrences are prevented where possible (e.g., 1997 Points to Consider in the Manufacture and Testing of Monoclonal Antibody Products for Human Use).

Mitigating Risk. Although many Contract Testing laboratories offer rapid nucleic acid-based detection assays for Cache Valley virus, raw material screening for this virus using such assays does not appear to be a viable means of eliminating risk. The industry experience thus far indicates that Cache Valley virus may be a low level, non-homogeneous contaminant of bovine serum. Viral screening performed on one bottle out of a large lot of serum therefore is no guarantee that this virus will not be encountered. Elimination of animal-derived materials (esp. bovine serum) from the manufacturing process may help to reduce the risk of experiencing this virus. Should this not be possible, treatment of the serum or serum-containing media should be considered. Gamma-irradiation has been demonstrated to be effective in inactivating this virus in bovine serum (Gauvin, 2009). UVC treatment of media containing bovine serum also appears to be quite effective at inactivating Cache Valley virus (Weaver, 2009).

Conclusions. Cache Valley virus infects livestock and has been found to contaminate biologics manufacturing processes employing bovine serum. It is a virus of concern for biologics manufacturers employing bovine serum which has not been gamma-irradiated. Risk of infection of biological products with Cache Valley virus through use of bovine serum may be mitigated through implementation of gamma-irradiation of the serum, or UVC- or high-temperature short-time (HTST) treatment of media containing the serum and of viral purification processes capable of removing and inactivating enveloped viruses.

Friday, December 18, 2009

Got Animal-Derived Materials? Part 3

By Dr. Ray Nims

The assessment of viral and transmissible spongiform encephalopathy (TSE) risk for animal-derived materials (ADM) used in the manufacture of biologics, which we have described in previous blogs, is just one component of an overall ADM program that should be in place at each organization producing biologics.



A formal ADM program at a biologics manufacturer ideally should be driven by an overriding SOP or policy document. This should address the procedures in place for minimizing the use of ADM, for procuring ADM with a view to minimizing viral and TSE risk, and for assessing the viral and TSE risk associated with the ADM that are used. There are specific sourcing requirements for ADM that are intended to minimize TSE risk (EMEA/410/01 Rev. 2 October 2003), and these must be followed or justification provided if deviated from. The evaluation of ADM for the presence of viruses of concern is addressed in the Code of Federal Regulations, Title 9 Part 113.53. ADM viral and TSE risk assessments should be conducted according to a formalized procedure by teams of individuals with education, training, and/or experience appropriate for these tasks. The composition of the risk assessment teams and the qualifications of their members should be described in revisable controlled documents. The risk assessments themselves should be recorded in controlled documents which may revised as new information becomes available from the ADM suppliers. The ADM information that is used as part of the risk assessment process should be archived in a manner tying it to the risk assessment itself.


The existence of a formalized ADM program, qualified risk assessment teams, as well as reports documenting the individual ADM risk assessments may be the subject of regulatory scrutiny during periodic inspections or inspections tied to a new product application. This is especially likely if the product is intended for global distribution, as these ADM issues are specifically mentioned in EP (Chapter 5.1.7) and EMEA (EMEA/410/01 Rev. 2 October 2003) guidance.

Wednesday, December 2, 2009

Should we care about…Vesiviruses?

By Ray Nims

Vesiviruses are single-stranded RNA viruses of family calicivirus, genus Vesivirus. They are non-enveloped and 30-40 nm in diameter, and the genus includes feline calicivirus, vesicular exanthema of swine virus, rabbit vesivirus, and San Miguel sea lion virus, as well as vesivirus isolate 2117.



source: Stewart McNulty, Queens University, Belfast, UK

Basis of Concern. Vesivirus 2117 has been isolated from biologics manufacturing processes employing Chinese hamster cell substrates on a number of occasions, the first being reported in 2003 (Oehmig et al., J. Gen. Virol. 84, 2837-2845, 2003), and additional occurrences being reported in 2008 and 2009.
The susceptibility of relevant manufacturing cell lines of different animal species to infection by this virus appears to be limited to the Chinese hamster. When infected, these cells undergo a relatively rapid lytic infection. The route of entry of the virus into biologics production processes has not been established with certainty, although the use of contaminated animal-derived materials, such as bovine sera, is considered to be the most likely source.

Regulatory Expectations. Vesivirus is not mentioned specifically in any regulatory guidance, as the detection of the 2117 isolate in biologics production has been reported only within the past decade. It is the intent of the guidance, however, that occurrences of viral contamination in biologics manufacturing be dealt with through implementation of specific testing methods as required to assure detection of future recurrences (e.g., ICH Q5A R1). In addition, it is expected that the route of entry of the virus be established and that the process be remediated so that future recurrences are prevented where possible (e.g., 1997 Points to Consider in the Manufacture and Testing of Monoclonal Antibody Products for Human Use).

Mitigating Risk. At least three Contract Testing laboratories have announced rapid nucleic acid-based detection assays for vesivirus isolate 2117 within the past year. These assays are available for raw material screening and for in-process testing of biologics bulk harvest samples. Elimination of animal-derived materials (esp. bovine sera) from the manufacturing process may help to reduce the risk of experiencing this virus. Should this not be possible, treatment of the sera or sera-containing media should be considered. Studies on the inactivation of caliciviruses indicate that UV treatment may be effective (Duizer et al., Appl. Env. Microbiol. 70, 4538-4543, 2004; de Roda Husman et al., Appl. Env. Microbiol. 70, 50989-5093, 2004). Gamma-irradiation at the dosages normally used does not appear to be effective, as might be expected for a virus of this relatively small size. Studies using MMV indicate that high-temperature short-time (HTST)-treatment of medium containing bovine serum is effective in inactivating this virus (Schleh et al., Biotechnol. Prog. 25: 854-860, 2009), and would by implication be effective for vesiviruses in general.

Conclusions. Vesivirus isolate 2117 preferentially infects Chinese hamster cells and has been found to contaminate biologics manufacturing processes employing this cell substrate. It is now a virus of concern for the biopharmaceutical industry. Risk of infection of biological products with vesiviruses through use of bovine-derived materials such as bovine sera may be mitigated through implementation of UV or HTST treatment of media containing the sera and of viral purification processes capable of removing and inactivating an even smaller non-enveloped virus such as MMV.