Showing posts with label vesivirus. Show all posts
Showing posts with label vesivirus. Show all posts

Monday, September 12, 2011

Ridding serum of viruses with gamma irradiation: part 1

by Dr. Ray Nims

Blood serum, while at times required as a medium component for cell growth in vitro, is an animal-derived material that can introduce contaminating viruses such as Cache Valley virus, REO virus, vesivirus, and epizootic hemorrhagic disease virusinto a biological product. If animal serum must be used in upstream manufacturing processes, the risk of introducing a virus may be mitigated by gamma irradiation of the frozen serum prior to use. How effective is this treatment, and against which viruses?

To answer this question, I have surveyed the literature from the past two decades. A number of investigations have been conducted and the results are in the public domain. The most useful of these studies have examined the dose-response relationships for viral inactivation (rendering of the virus as non-infectious) by gamma irradiation.

In the table below, I have assembled the results obtained for 7 viruses, including four that might be expected to be found in bovine serum: (bovine viral diarrhea virus [BVDV], infectious bovine rhinotracheitis virus [IBR], respiratory-enteric orphan virus [REO virus], and parainfluenza type 3 virus [PI3]). The other three (canine adenovirus, porcine parvovirus [PPV], and mouse minute virus [MMV]), while perhaps not expected to be found in bovine serum, have been studied as model viruses for the adenovirus and parvovirus families (click on table to enlarge).

The efficacy of gamma irradiation for viral inactivation is reported as log10 reduction in titer per kGy, rather than the more commonly employed D10 (Mrad dose required to reduce the titer by 1 log10), as I find the former value to be more useful. To estimate the effectiveness of a given dose of gamma radiation for inactivation of a virus, just multiply the dose in kGy by the log10 reduction in titer per kGy value from the table. The result is the number of logs of inactivation estimated to be achieved for that virus at that radiation dose.

These data tell us that the mid- to large-sized viruses BVDV, IBR, PI3, REO, and CAV should be readily inactivated at the gamma radiation doses normally applied to frozen serum for risk mitigation (25-45 kGy). On the other hand, the two parvoviruses, PPV and MMV, are more difficult to inactivate, presumably due to their small size. Parvoviruses are often used to challenge viral removal and inactivation processes due to their size and lack of an envelope. Higher kGy dose levels may increase the effectiveness of inactivation for these viruses, although at such levels the performance of the animal serum being irradiated may be adversely impacted.

Gamma-irradiation can effectively mitigate the risk of introducing other potential contaminants of bovine serum, including Cache Valley virus, blue tongue virus, and epizootic hemorrhagic disease virus. Like the parvoviruses, however, other relatively small non-enveloped viruses of the calicivirus, picornavirus, polyomavirus, and circovirus families may represent cases where gamma irradiation is less effective at the doses normally applied. Other means of mitigating the risk associated with these viruses may need to be considered.

< This information was excerpted in part from Nims, et al. Biologicals (2011) >


Information sources: Daley et al., FOCUS 20(3):86-88, 1998; Wyatt et al. BioPharm 1993: 6(4):34-40; Purtel et al., 2006; Hanson and Foster, Art to Science 16:1-7, 1997; Hyclone Labs Art to Science 12(2): 1-6, 1993; Gauvin and Nims 2010; Plavsic et al. BioPharm 2001: 14(4):32-36.

Wednesday, September 22, 2010

Manufacturing Biologics with CHO Cells? What’s the Risk for Viral Contamination?

by Dr. Ray Nims

Chinese hamster ovary (CHO) cells are frequently used in the biopharmaceutical industry for the manufacture of biologics such as recombinant proteins, antibodies, peptibodies, and receptor ligands. One of the reasons that CHO cells are often used is that these cells have an extensive safety track record for biologics production. This is considered to be a well-characterized cell line, and as a result the safety testing required may be less rigorous in some respects (e.g., retroviral safety) than that required for other cell types. But how susceptible is the cell line to viral contamination?

There are a couple of ways of answering this question. One way is to examine, in an empirical fashion, the susceptibility of the cell type to productive infection by model exogenous viruses. This type of study has been conducted at least three times over the past decades by different investigators. Wiebe and coworkers (In: Advances in Animal Cell Biology and Technology for Bioprocesses. Great Britain, 1989; 68-71) examined over 45 viruses from 9 virus families for ability to infect CHO-K1 cells, using immunostaining and cytopathic effect to detect infection. Only 7 of the viruses (Table 1) were capable of infecting the cells. Poiley and coworkers (In Vitro Toxicol. 4: 1-12, 1991) followed with a similar study in which 9 viruses from 6 families were evaluated for ability to infect CHO-K1 cells as detected by cytopathic effect, hemadsorption, and hemagglutination. This study did not add any new viruses to the short list (Table 1). The most recent study was conducted by Berting et al. This study involved 14 viruses from 12 families. The viruses included a few known to have contaminated CHO cell-derived biologics in the past two decades, and therefore did add some new entities to the list in Table 1. Still, the list of viruses that are known to replicate in CHO cells is relatively short.



Chinese hamster cells possess an endogenous retrovirus which expresses its presence in the form of retroviral particles, however these particles have been consistently found to be non-infectious for cells from other animals, including human cells. This endogenous retrovirus therefore does not present a safety threat (Dinowitz et al. Dev. Biol. Stand. 76:210–207, 1992).

A second way of looking at the question of viral susceptibility of CHO cells is to examine the incidence and types of reported viral contaminations of manufacturing processes employing CHO cell substrates. This subject has been reviewed a number of times, most recently by Berting et al. The types of viral contaminants fill a fairly short list (Table 2). In most cases, the contaminations have been attributed to the use of a contaminated animal-derived raw material, such as bovine serum.

Sources: Rabenau et al.1993; Garnick 1996; Oehmig et al., 2003; Nims Dev. Biol. 123:153-164, 2006; Nims et al., 2008; Genzyme 2009..

Considering the frequency with which CHO cell substrates have been used in biologics production, this history of viral contamination is remarkably sparse. This is further testament to the overall safety of this particular cell substrate.






Wednesday, December 2, 2009

Should we care about…Vesiviruses?

By Ray Nims

Vesiviruses are single-stranded RNA viruses of family calicivirus, genus Vesivirus. They are non-enveloped and 30-40 nm in diameter, and the genus includes feline calicivirus, vesicular exanthema of swine virus, rabbit vesivirus, and San Miguel sea lion virus, as well as vesivirus isolate 2117.



source: Stewart McNulty, Queens University, Belfast, UK

Basis of Concern. Vesivirus 2117 has been isolated from biologics manufacturing processes employing Chinese hamster cell substrates on a number of occasions, the first being reported in 2003 (Oehmig et al., J. Gen. Virol. 84, 2837-2845, 2003), and additional occurrences being reported in 2008 and 2009.
The susceptibility of relevant manufacturing cell lines of different animal species to infection by this virus appears to be limited to the Chinese hamster. When infected, these cells undergo a relatively rapid lytic infection. The route of entry of the virus into biologics production processes has not been established with certainty, although the use of contaminated animal-derived materials, such as bovine sera, is considered to be the most likely source.

Regulatory Expectations. Vesivirus is not mentioned specifically in any regulatory guidance, as the detection of the 2117 isolate in biologics production has been reported only within the past decade. It is the intent of the guidance, however, that occurrences of viral contamination in biologics manufacturing be dealt with through implementation of specific testing methods as required to assure detection of future recurrences (e.g., ICH Q5A R1). In addition, it is expected that the route of entry of the virus be established and that the process be remediated so that future recurrences are prevented where possible (e.g., 1997 Points to Consider in the Manufacture and Testing of Monoclonal Antibody Products for Human Use).

Mitigating Risk. At least three Contract Testing laboratories have announced rapid nucleic acid-based detection assays for vesivirus isolate 2117 within the past year. These assays are available for raw material screening and for in-process testing of biologics bulk harvest samples. Elimination of animal-derived materials (esp. bovine sera) from the manufacturing process may help to reduce the risk of experiencing this virus. Should this not be possible, treatment of the sera or sera-containing media should be considered. Studies on the inactivation of caliciviruses indicate that UV treatment may be effective (Duizer et al., Appl. Env. Microbiol. 70, 4538-4543, 2004; de Roda Husman et al., Appl. Env. Microbiol. 70, 50989-5093, 2004). Gamma-irradiation at the dosages normally used does not appear to be effective, as might be expected for a virus of this relatively small size. Studies using MMV indicate that high-temperature short-time (HTST)-treatment of medium containing bovine serum is effective in inactivating this virus (Schleh et al., Biotechnol. Prog. 25: 854-860, 2009), and would by implication be effective for vesiviruses in general.

Conclusions. Vesivirus isolate 2117 preferentially infects Chinese hamster cells and has been found to contaminate biologics manufacturing processes employing this cell substrate. It is now a virus of concern for the biopharmaceutical industry. Risk of infection of biological products with vesiviruses through use of bovine-derived materials such as bovine sera may be mitigated through implementation of UV or HTST treatment of media containing the sera and of viral purification processes capable of removing and inactivating an even smaller non-enveloped virus such as MMV.