Showing posts with label animal cells. Show all posts
Showing posts with label animal cells. Show all posts

Thursday, September 22, 2011

A much improved Ph. Eur. Chapter 5.3.2


Vaccine manufacturers intending to market in the EU should be aware of a recent change in the European Pharmacopoeia (Ph. Eur.) chapter 5.2.3 Cell substrates for production of vaccines for human use. This chapter addresses the characterization of vaccine cell substrates. The section on Test Methods for Cell Cultures within the chapter includes an instruction to perform a co-cultivation study. The language previously was as follows: “Co-cultivation. Co-cultivate intact and disrupted cells separately with other cell systems including human cells and simian cells. Carry out examinations to detect possible morphological changes. Carry out tests on the cell culture fluids to detect haemagglutinating viruses. The cells comply with the test if no evidence of any extraneous agent is found.”

This section has been changed, as of Ph. Eur. version 7.2 effective in January of 2011, to the following: “Co-cultivation. For mammalian and avian cell lines, co-cultivate intact and/or disrupted cells separately with other cell systems including human cells and simian cells. For insect cell lines, extracts of disrupted cells are incubated with other cell systems, including human, simian, and at least 1 cell line that is different from that used in production, is permissible to insect viruses and allows detection of human arboviruses (for example BHK-21). Carry out examinations to detect possible morphological changes. Carry out tests on the cell culture fluids to detect haemagglutinating viruses, or on cells to detect haemadsorbing viruses. The test for haemagglutinating viruses does not apply for arboviruses to be detected in insect cells. The cells comply with the test if no evidence of any extraneous agent is found.”

So what is the big deal? Co-cultivation is a commonly employed technique for detecting infectious retrovirus in a cell bank. It is effective for this purpose because the chances for spread of infectious virus from test cell to indicator (host) cell are optimized by the cultivation of live cells of each kind in close proximity. The endpoint of the retrovirus assay, be it reverse transcriptase enzyme induction or rescue of an S+L- virus, is not interfered with by the presence of two cell types in one culture. The same is not always true for a co-cultivation of a test cell with an indicator (host) cell for detection of infectious virus when morphological changes (viral cytopathic effects) are one of the assay endpoints. The reason is that the diploid human cells (e.g., MRC-5 or WI-38) used as one of the indicator cells in such assays are rapidly displaced during co-cultivation with intact continuous cell lines used to produce vaccines, such as the simian cell Vero. The result of this is that within a short period of time in co-cultivation, the test culture is no longer predominated by the diploid cell but rather by the test cells and observation of the culture for cytopathic effects becomes problematic. Changing the language of this section to read “…co-cultivate intact and/or disrupted cells separately with other cell systems…” allows the user to eliminate the inoculation of intact test cells onto a diploid indicator cell.

The other useful modification to the language of this section is the following addition: “For insect cell lines, extracts of disrupted cells are incubated with other cell systems, including human, simian, and at least 1 cell line that is different from that used in production, is permissible to insect viruses and allows detection of human arboviruses (for example BHK-21).” Testing of insect cells for extraneous virus is only marginally effective when it is conducted per the usual method of inoculating another insect cell. Why? The insect cells that are available are most commonly suspension cultures, making observation for cytopathic effect problematic. The extraneous viruses that are of most concern for an insect production cell are the arboviruses (viruses transmitted via insect vectors). It has been known for some time that the Syrian hamster cell line BHK-1 is an excellent host cell for detecting arboviruses. The new language in this section of Ph. Eur. chapter 5.2.3 now clears the way for the use of the monolayer BHK-1 cell line to be used for the testing of insect cells for extraneous virus. In this regard the Ph. Eur. chapter is now more closely aligned with the World Health Organization’s 2009 Evaluation of cell substrates for the production of biologicals: revision of WHO recommendations. The latter has the following passage: "For instance, in the case of insect cell substrates, certain insect cell lines may be used for detection of insect viruses, and BHK cells may serve for the detection of arboviruses."
   
Taken together, the recent changes to Ph. Eur. Chapter 5.2.3 greatly improve the chapter and the viral safety testing of vaccine production cell banks specifically proscribed within it.

Wednesday, September 22, 2010

Manufacturing Biologics with CHO Cells? What’s the Risk for Viral Contamination?

by Dr. Ray Nims

Chinese hamster ovary (CHO) cells are frequently used in the biopharmaceutical industry for the manufacture of biologics such as recombinant proteins, antibodies, peptibodies, and receptor ligands. One of the reasons that CHO cells are often used is that these cells have an extensive safety track record for biologics production. This is considered to be a well-characterized cell line, and as a result the safety testing required may be less rigorous in some respects (e.g., retroviral safety) than that required for other cell types. But how susceptible is the cell line to viral contamination?

There are a couple of ways of answering this question. One way is to examine, in an empirical fashion, the susceptibility of the cell type to productive infection by model exogenous viruses. This type of study has been conducted at least three times over the past decades by different investigators. Wiebe and coworkers (In: Advances in Animal Cell Biology and Technology for Bioprocesses. Great Britain, 1989; 68-71) examined over 45 viruses from 9 virus families for ability to infect CHO-K1 cells, using immunostaining and cytopathic effect to detect infection. Only 7 of the viruses (Table 1) were capable of infecting the cells. Poiley and coworkers (In Vitro Toxicol. 4: 1-12, 1991) followed with a similar study in which 9 viruses from 6 families were evaluated for ability to infect CHO-K1 cells as detected by cytopathic effect, hemadsorption, and hemagglutination. This study did not add any new viruses to the short list (Table 1). The most recent study was conducted by Berting et al. This study involved 14 viruses from 12 families. The viruses included a few known to have contaminated CHO cell-derived biologics in the past two decades, and therefore did add some new entities to the list in Table 1. Still, the list of viruses that are known to replicate in CHO cells is relatively short.



Chinese hamster cells possess an endogenous retrovirus which expresses its presence in the form of retroviral particles, however these particles have been consistently found to be non-infectious for cells from other animals, including human cells. This endogenous retrovirus therefore does not present a safety threat (Dinowitz et al. Dev. Biol. Stand. 76:210–207, 1992).

A second way of looking at the question of viral susceptibility of CHO cells is to examine the incidence and types of reported viral contaminations of manufacturing processes employing CHO cell substrates. This subject has been reviewed a number of times, most recently by Berting et al. The types of viral contaminants fill a fairly short list (Table 2). In most cases, the contaminations have been attributed to the use of a contaminated animal-derived raw material, such as bovine serum.

Sources: Rabenau et al.1993; Garnick 1996; Oehmig et al., 2003; Nims Dev. Biol. 123:153-164, 2006; Nims et al., 2008; Genzyme 2009..

Considering the frequency with which CHO cell substrates have been used in biologics production, this history of viral contamination is remarkably sparse. This is further testament to the overall safety of this particular cell substrate.






Wednesday, December 23, 2009

What cell line is this anyway?

By Dr. Ray Nims

For about as long as scientists have been using cell cultures in biomedical research, there have been cases of cell line misidentification. This has been especially true for continuous cell lines, with the increased probability over time of mislabeling or cross-contamination. The primary cross-contaminant historically has been HeLa, a human cervical carcinoma cell which, given the opportunity, could outgrow most other cells in culture. More recently, the use of feeder cells for the propagation of human stem cells, and the use of xenografting for the propagation of human tumor cells, has provided additional opportunities for cell line cross-contamination and misidentification.


In the past, confirmation of cell line species of origin has been the main approach for authenticating cell lines. This was done initially by karyotyping or by immunological techniques, but more recently it has been done through the technique of isoenzyme analysis. An example of an isoenzyme analysis is shown below for Peptidase B and Aspartate Aminotransferase.  These agarose gels show a positive control, a negative control (this is the band that does not line up with the others), the test article and a standard extract.  These gels confirmed the identity of the test article as mouse derived, as expected. 




Isoenzyme analysis has the advantage that it is rapid, not very technically demanding, and may be used not only to confirm species of origin but also to detect the presence of a cross-contaminating cell if the latter is present in the culture at 10% or greater (Nims et al., Sensitivity of Isoenzyme Analysis for the Detection of Interspecies Cell Line Cross-Contamination. In Vitro Cell. Dev. Biol.-Animal 34:35-39, 1998). In fact, isoenzyme analysis is currently the primary method employed within the biopharmaceutical industry for cell line authentication in satisfaction of 1993 Points to Consider and ICH Q5D guidance.

Recent advances in molecular diagnostic techniques have made possible the authentication of human cell lines to the individual level. DNA fingerprinting technologies have matured to the point that some of them, especially single nucleotide polymorphism (SNP) typing and single tandem repeat (STR) profiling, are now considered to be viable options for standardizing human cell authentication (see ATCC SDO newsletter article, page 5. For both human and animal cells, DNA fingerprinting provides a means of determining authenticity to the individual level. However, the primary drawback is that the fingerprinting techniques as routinely performed will be less or not at all useful for detecting interspecies cocultivations or cross-contaminations. For this purpose, it may be necessary to retain isoenzyme analysis as part of the authentication armament even when the molecular technologies become the definitive authentication practices for human and animal cell lines.